Course Syllabus for English-Taught Majors

‘Structural Chemistry ’Course Syllabus

Course Code09040001

Course CategoryMajor Basic



Total Hours54 Hours         Credit3

Lecture Hours54 Hours         

InstructorsJihong Wu

TextbooksStructural Chemistry孙墨珑编著,东北林业大学出版社。  


I.  Introduction to Structural Chemistry

The major targets this course includes the followings: (1) to introduce the material structure of the basic concepts, basic theory, and basic methods for learning “Structural Chemistry”; (2) to explore the relationship between the microstructures and properties of atoms, molecules, and crystals; (3) to systematically clarify the essence of the periodic law of elements; (4) to deeply and qualitatively clarify the essence of the chemical bonds. This course introduces the basic principles of quantum mechanics and their applications in simple systems, structure of atoms, molecules, and crystals, symmetry of molecular orbitals, molecular orbital theory, and ligand field theory, etc. After learning this course, the students should be able to analyze and solve the basic chemistry problems from the point of view of quantum mechanics.


II.Table of contents

Section I (Chapter 1) Basic knowledge of quantum mechanics

1.1 Failures of classical mechanics

1)Black-body radiation & Planck’s solution;

2)Photoelectric effect & Einstein’s theory;

3)Hydrogen spectrum & Bohr’s model.

1.2  Characteristics of the motion of microscopic particles

1)Wave-particle duality;

2)Uncertainty principle.

1.3  The basic postulates of quantum mechanics

1) Postulate 1: wavefunction;

2)Postulate 2: Hermitian operators;

3) Postulate 3: Schrödinger equation;

4) Postulate 4: linearity and superposition;

5) Postulate 5: Pauli exclusion principle.

1.4  Applications of quantum mechanics in simple cases

1) Free particle in one-dimensional (1D) box;

2)Applications of the 1D-box model in simple chemical systems;

3) Free particle in two-dimensional (2D) & three-dimensional (3D) box;

4) Tunneling & scanning tunneling microscopy (STM).


Section II (Chapter 2) Structures and properties of atoms

2.1 One-electron atom: H atom

1) The Schrödinger equation of H atoms;

2) Solution of the Schrödinger equation of H atom.

2.2  Quantum numbers

1)Principle quantum number, n;

2)Angular momentum quantum number, l;

3)Magnetic quantum number, m;

4)Zeeman effect.

2.3  Wavefunction and electron cloud

1)Radial distribution;

2)Angular distribution;

3)Spatial distribution.

2.4 Structure of multi-electron atoms

1)The Schrödinger equation of multi-electron atoms

Ÿ    Self-consistent field method;

Ÿ    Central field approximation.

2)      The building-up principles and electron configuration of multi-electron atoms

Ÿ    Pauli exclusion principle;

Ÿ    Principle of minimum energy;

Ÿ    Hund’s rule.

2.5  Electron spin and Pauli exclusion principle

2.6  Atomic spectroscopy

1)Orbital-spin coupling;

2)Spectroscopic terms & term symbol;

3) Derivation of atomic term.

4)Hund’s rule on the spectroscopic terms;

2.7  Atomic properties

1)Energy of ionization;

2)Electron affinity;


Section III (Chapters 3-6) Structures and properties of molecules

Chapter 3 Geometric structure of molecules

Molecular symmetry & symmetry point group

3.1  Symmetry elements and symmetry operations

1)      Symmetry elements and symmetry operations;

2)      Combination rules of symmetry elements;

3.2  Point groups & symmetry classification of molecules

3.3  Point groups & groups multiplication

3.4  Applications of molecular symmetry

1) Chirality & optical activity;

2)Polarity & dipole moment.


Chapter 4 Structure of biatomic molecules (X2 & XY)

4.1 Linear variation method and structure of H2+ ion

      1) Shrödinger equation of H2+ ion;

      2) Linear variation method;

      3) Treatment of H2+ ion using linear variation method;

      4) Solutions of H2+ ion.

4.2 Molecular orbital theory and diatomic molecules

      1) Molecular orbital theory;

      2) Structure of homonuclear diatomic molecules (X2);

      3) Structure of heteronuclear diatomic molecules (XY).

4.3 Valence bond (VB) theory and H2 molecule


Chapter 5 Structure of polyatomic molecules (A)

5.1 Structure of Methane (CH4)

      1) Delocalized molecular orbitals of methane (CH4);

      2) Localized molecular orbitals of methane (CH4).

5.2 Molecular orbital hybridization

      1) Theory of molecular orbital hybridization;

      2) Construction of hybrid orbitals;

      3) Structure of ABn molecules;

      4) Molecular stereochemistry: valence shell electron-pair repulsion (VSEPR) model.                

5.3 Delocalized molecular orbital theoryHückel molecular orbital (HMO) theory

      1) HMO method & conjugated systems;

      2) HMO treatment for butadiene;

3) HMO treatment for cyclic conjugated polyene (CnHn);

4) Molecular diagrams;

5) Delocalized π bonds.

5.4 Structure of electron deficient molecules

5.5 Symmetry of molecular orbitals and symmetry rules for molecular reactions

5.6 Molecular spectroscopy

1)Infrared absorption spectroscopy: molecular vibrations;

2)Raman scattering spectroscopy: molecular vibrations;

3)Fluorescence spectroscopy: electronic transitions;

4) NMR spectroscopy: nuclear magnetic resonances.


Chapter 6 Structure of polyatomic molecules (B), coordination compounds

6.1 Crystal field theory

6.2 CO and N2 coordination complexes

6.3 Organic metal complexes

      1) Zeise’s salts;

      2) Sandwich complexes.

6.4 Clusters

      1) Transition-metal cluster compounds

      2) Carbon clusters and nanotubes


Section IV (Chapters 7-9) Structure of crystals

Chapter 7 Basics of crystallography

7.1 Periodicity and lattices of crystal structure

      1) Characteristics of crystal structure;

      2) Lattices and unit cells;

      3) Bravais lattices and unit cells of crystals;

      4) Real crystals & crystal defects.

7.2 Symmetry in crystal structure

      1) Symmetry elements and symmetry operations;

      2) Point groups (32) and space groups (230).

7.3 X-Ray diffraction of crystals

      1) X-ray diffraction of crystals

Ÿ   Laue equation;

Ÿ   Bragg’s law;

Ÿ   Reciprocal lattice.

      2) Instrumentation of X-ray diffraction;

      3) Applications of X-Ray diffraction

Ÿ   Single crystal diffraction: crystal structure determination;

Ÿ   Powder diffraction: qualitative & quantitative analysis of crystalline materials

Chapter 8 Crystalline solids, I: metals and alloys

8.1 Close Packing of Spheres

       1) Close packing of identical spheres;

       2) Packing density;

       3) Interstices.

8.2 Structures and Properties of Pure Metals

8.3 Structures and Properties of Alloy

Chapter 9 Crystalline solids, II: ionic crystals

9.1 Packing of Ions;

9.2 Crystal Structure of Some Typical Ionic Compounds

9.3 Trend of Variation of Ionic Radii

9.4 Pauling Rule of Ionic Crystal Structure

9.5 Crystals of Functional Materials

1) Nonlinear optical materials;

2) Magnetic materials;

3) Conductive polymers;

4) Semiconductors: band gap and photocatalysis

III.             Table of Schedule

No. of Chapters


Number of hours

Chapter 1

Quantum Theory


Chapter 2

Atomic Structure


Chapters 3-6

Molecular Structure


Chapters 7-9

Crystal Structure







[1] 王荣顺主编,东北师范大学等,《结构化学》,高等教育出版社,2003年。

[2] 周公度等编《结构化学基础》(第三版),北京大学出版社,2002年。

[3] 徐光宪,《物质结构》,人民教育出版社,1987年。

[4] 谢有畅,邵美成,《结构化学》(上、下册),人民教育出版社,1979年。

[5] 唐有祺,《结晶化学》,高等教育出版社,1979年。

[6] 江元生编著,《结构化学》,高等教育出版社,1997年。

[7] 倪行,高剑南编著,《物质结构学习指导》,科学出版社,1999年。

[8] 周公度,段连运编著,《结构化学习题解析》,北京大学出版社,1997年。

[9] 李炳瑞主编,《结构化学》,高等教育出版社,2004年。

[10] 周公度编著,《晶体结构的周期性和对称性》(第一版),高等教育出版社,1992年。

[11] Advanced Structural Inorganic Chemistry Authors: Wai-Kee Li, Gong-Du Zhou, and Thomas Mak. Publisher: Oxford University Press.

[12] Atkins’ Physical Chemistry Authors: Peter Atkins, and Julio de Paul. Publisher: Oxford University Press.

[13] Quantum Mechanics Authors: Claude Cohen-Tannoudji, Bernard Diu, and Frank Laloe. Publisher: John Wiley and Sons.


                                          2016    10     11